목록분류 (2)
안 쓰던 블로그
kaggle - Dogs vs. Cats 1. 소규모 데이터셋에서 CNN 훈련하기(Dogs vs. Cats 데이터셋) https://foxtrotin.tistory.com/473 2. 사전 훈련된 CNN 사용하기 (ImageNet 데이터셋, VGG16 모델) https://foxtrotin.tistory.com/486 3. 미세 조정 https://foxtrotin.tistory.com/507 케라스 창사자에게 배우는 딥러닝 5장을 개인적으로 공부한 내용을 덧붙여 정리한 글입니다. 컴퓨터 비전 작업 중 매우 적은 데이터를 사용해 이미지 분류 모델을 훈련하는 일은 흔하게 만날 수 있을 것이다. '적은' 샘플이란 보통 수백 개~수만 개 사이를 의미한다. 이번 글에서는 4,000개의 강아지와 고양이 사진(2,..
분류(Classification) 학습 데이터의 피처와 레이블값(결정 값, 클래스 값)을 학습, 모델을 생성하고, 이렇게 생성된 모델에 새로운 데이터 값이 주어졌을 때 미지의 레이블 값을 예측하는 것 나이브 베이즈(베이즈 통계 기반) 로지스틱 회귀(독립변수, 종속변수의 선형 관계성 기반) 결정 트리(데이터 균일도에 따른 규칙 기반) 신경망(심층 연결 기반) 앙상블(서로 다르거나 같은 머신러닝 알고리즘 결합, 결정 트리를 기반) 등등.. 결정 트리와 앙상블 결정 트리는 데이터 스케일링이나 정규화 등의 사전 가공 영향이 적고, 쉽고 유연하게 적용되지만 예측 성능 향상을 위해서는 복잡한 규칙 구조를 가져야 한다. 이로 인한 overfitting과적합 때문에 오히려 예측 성능이 저하되는 단점이 있다 앙상블은 매..